Applications
 of Group Theory in Chemistry

M. S. Selvakumar,

Asst. Professor of Chemistry, St Xavier' College (Autonomous), Palayamkottai

He hath made every thing beautiful in his time; also He hath set the world in their heart, so that no man can find out the worl that God maketh from the beginning to the end

Ecclesiastes 3:11

Symmetry and Periodicity - the two great powers of nature

Appreciating symmetry in a scientific way

Facial symmetry

Invariance to transformation as an indicator of facial symmetry

Mirror image

Symmetry - beautiful

Flower is beautiful

Leaves are beautiful

All beauty is due to symmetry

Even molecules are beautiful

Symmetry Elements

Symmetry elements are mirror planes, axis of rotation, centers of inversion, etc.

A molecule has a given symmetry element if the operation leaves the molecule appearing as if nothing has changed (even though atoms and bonds may have been moved.)

Symmetry Elements

Element
n-fold axis
Mirror plane
Center of inversion
n-fold axis of improper

Symmetry Operation Identity
Rotation by $2 \pi / n$ Reflection

Inversion

i

Rotation by $2 \pi / n$ S_{n} rotation followed by reflectionperpendicular to the axis of rotation
σ
Symbol
E
C_{n}

Identity, E

All molecules have Identity. This operation leaves the entire molecule unchanged. A highly asymmetric molecule such as a tetrahedral carbon with 4 different groups attached has only identity, and no other symmetry elements.

n-fold Rotation

Water has a 2-fold axis of rotation. When rotated by 180°, the hydrogen atoms trade places, but the molecule will look exactly the same.

Rotational axes of BF_{3}

principal axis
(highest value of C_{n})

three-fold axis viewed from above
three-fold axis viewed from the side
two-fold axis viewed from the side
two-fold axis viewed from above

n-fold Axis of Rotation

Ammonia has a C_{3} axis. Note that there are two operations associated with the C_{3} axis. Rotation by 120° in a clockwise or a counterclockwise direction provide two different orientations of the molecule.

Mirror Planes

The reflection of the water molecule in either of its two mirror planes results in a molecule that looks unchanged.

Mirror Planes

The subscript "v" in σ_{v}, indicates a vertical plane of symmetry. This indicates that the mirror plane includes the principal axis of rotation $\left(\mathrm{C}_{2}\right)$.

1) Mirror Planes.

Mirror symmetry means invariance to reflection, as shown for the molecules below:

$\left[\mathrm{ZnI}_{4}\right]^{2-}$

Mirror planes (σ) of BF_{3} :

Mirror planes can contain the principal axis (σ_{v}) or be at right angles to it $\left(\sigma_{h}\right) . \mathrm{BF}_{3}$ has one σ_{h} and three σ_{v} planes: ($v=$ vertical, $h=$ horizontal)

$$
\sigma_{v}
$$

mirror plane
C_{3} principal axis
σ_{h}
mirror plane

$\boldsymbol{\sigma}_{\boldsymbol{h}}$ mirror plane is at right angles to the C_{3} axis

Mirror Planes

The vertical planes, σ_{v}, go through the carbon atoms, and include the C_{6} axis.

The planes that bisect the bonds are called dihedral planes, σ_{d}.

Inversion

The inversion operation projects each atom through the center of inversion, and across to the other side of the molecule.

Inversion or center of symmetry

Improper Rotation

An improper rotation is rotation, followed by reflection in the plane perpendicular to the axis of rotation.

Improper Rotation

The staggered conformation of ethane has an S_{6} axis that goes through both carbon atoms.

Symmetry Elements

Element
n-fold axis
Mirror plane
Center of inversion
n-fold axis of improper

Symmetry Operation Identity
Rotation by $2 \pi / n$ Reflection

Inversion

i

Rotation by $2 \pi / n$ S_{n} rotation followed by reflectionperpendicular to the axis of rotation
σ
Symbol
E
C_{n}

Rotational axes and mirror planes of the water molecule:

$C_{2} \quad \sigma_{v}$ mirror plane

The water molecule has only one rotational axis, its C_{2} axis which is also its principal axis. It has two mirror planes tha contain the principal axis, which are therefore σ_{v} planes. It has no σ_{h} mirror plane, and no center of symmetry.

Group Theory

A group is a mathematically defined collection of (symmetry) operations that have a specific set of mathematical properties.

- Identity element
- Inverse operation for each member of the group
- Closure
- Associative

To find out whether the symmetry elements form a group multiplication table is constructed.

Point Groups

Molecules with the same symmetry elements are placed into point groups.

Chemical Applications of Group Theory

Chirality
Dipolemoment
To predict hybridisation scheme
vibrational spectroscopy

- ir and Raman
- \# allowed stretching \& bending frequencies

Chirality - optical activity

Allenes - disymmetry
Lactic acid - Assymmetry

Chiral molecules lack an improper axis of rotation $\left(S_{n}\right)$, a center of symmetry (i) or a mirror plane (σ).

Dipolement

Predicting polarity of molecules. A molecule cannot have a permanent dipole moment if it
a) has a center of inversion
b) belongs to any of the D point groups
c) belongs to the cubic groups Tor O

Compounds having many C_{2} axes
Compounds having inversion centre
Dipolemoment is along C_{n} axis and in the reflection plane.

Symmetry operations - matrices (Representation) - reducible and irreducible
Matrices have character - character table
Characted Table -
Hybridisation Scheme
Vibrational modes

Character Tables

The symmetry properties of each point group are summarized on a character table. The character table lists all of the symmetry elements of the group, along with a complete set of irreducible representations.

Character Table ($\mathrm{C}_{2 \mathrm{v}}$)

Point Group Label
 Symmetry Operations - The Order is the total number of operations

Symmetry Representation Labels

"A" means symmetric with regard to rotation about the principle axis.
"B" means anti-symmetric with regard to rotation about the principle axis.
Subscript numbers are used to differentiate symmetry labels, if necessary.
" 1 " indicates that the operation leaves the function unchanged: it is called "symmetric". " -1 " indicates that the operation reverses the function: it is called "anti-symmetric".

Character Table ($\mathrm{C}_{2 \mathrm{v}}$)

Symmetry of Functions									
$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$					
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$			
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy			
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz			
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz			

The functions to the right are called basis functions. They represent mathematical functions such as orbitals, rotations, etc.

Thank you

A p_{z} orbital has the same symmetry as an arrow pointing along the z-axis.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

A p_{x} orbital has the same symmetry as an arrow pointing along the x-axis.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The p_{x} orbital

If a p_{x} orbital on the central atom of a molecule with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is rotated about the C_{2} axis, the orbital is reversed, so the character will be 1.

The p_{x} orbital

If a p_{x} orbital on the central atom of a molecule with $\mathrm{C}_{2 v}$ symmetry is rotated about the C_{2} axis, the orbital is reversed, so the character will be -1 .

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	-	1	z	$x^{2}, y^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The p_{x} orbital

If a p_{x} orbital on the central atom of a molecule with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is reflected in the yz plane, the orbital is also reversed, and the character will be -1 .

The p_{x} orbital

If a p_{x} orbital on the central atom of a molecule with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is reflected in the yz plane, the orbital is also reversed, and the character will be -1 .

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The p_{x} orbital

If a p_{x} orbital on the central atom of a molecule with $\mathrm{C}_{2 \mathrm{v}}$ symmetry is reflected in the xz plane, the orbital is unchanged, so the character is +1 .

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\left.\sigma_{y}^{\prime} / \mathrm{yz}\right)$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

A p_{y} orbital has the same symmetry as an arrow pointing along the y-axis.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Rotation about the n axis, R_{n}, can be treated in a similar way.

The \mathbf{z} axis is pointing out of the screen!

If the rotation is still in the same direction (e.g. counter clock-wise), then the result is considered symmetric.

If the rotation is in the opposite direction (i.e. clock-wise), then the result is considered anti-symmetric.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{\mathrm{v}}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	$x y$
$\mathrm{~B}_{1}$	1	-1	1	-1	x, R_{y}	$x z$
$\mathrm{~B}_{2}$	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

d orbital functions can also be treated in a similar way

The \mathbf{z} axis is pointing out of the screen!

$$
\sigma_{v}^{\prime}(y z)
$$

\therefore anti-symmetric
$\therefore-1$'s in table

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	$\mathrm{x}^{2}, \mathrm{y}^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Character Table Representations

1. Characters of +1 indicate that the basis function is unchanged by the symmetry operation.
2. Characters of -1 indicate that the basis function is reversed by the symmetry operation.
3. Characters of 0 indicate that the basis function undergoes a more complicated change.

Character Table Representations

1. An A representation indicates that the functions are symmetric with respect to rotation about the principal axis of rotation.
2. B representations are asymmetric with respect to rotation about the principal axis.
3. E representations are doubly degenerate.
4. T representations are triply degenerate.
5. Subscrips u and g indicate asymmetric (ungerade) or symmetric (gerade) with respect to a center of inversion.

Determination of the Reducible Representation of a Molecule

Symmetry elements present

$$
\begin{array}{llll}
\mathrm{E} & \mathrm{C}_{2} & \sigma_{v} & \sigma_{v}^{\prime}
\end{array}
$$

$\sigma_{v}{ }^{\prime}$
3

Reducible Representation

Symmetry operations that are applied to the each atom of the molecule that does not move produce the reducible representation

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	σ_{v}	$\sigma_{\mathrm{v}}{ }^{\prime}$
$\Gamma_{\text {red }}$	9	-1	1	3

Character Table

A reducible representation can be decomposed into a set of irreducible representations using a character table

$C_{2 v}$	E	C_{2}	σ_{v}	$\sigma_{v}{ }^{\prime}$
A_{1}	1	1	1	1
A_{2}	1	1	-1	-1
B_{1}	1	-1	1	-1
$B_{2 / 3 / 2019}$	1	-1	-1	1

Decomposing a Reducible Representation to Irreducible Representations

$$
\begin{aligned}
& a_{i}=(1 / h) \sum\left(X^{R} \cdot X_{i}^{R} \cdot C^{R}\right) \\
& a A_{1}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot 1 \cdot 1)+(1 \cdot 1 \cdot 1)+(3 \cdot 1 \cdot 1)] \\
&=3 \\
& a_{A_{2}}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot 1 \cdot 1)+(1 \cdot-1 \cdot 1)+(3 \cdot-1 \cdot 1)] \\
&=1 \\
& a B_{1}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot-1 \cdot 1)+(1 \cdot 1 \cdot 1)+(3 \cdot-1 \cdot 1)] \\
&=2 \\
& \mathrm{aB}_{2}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot-1 \cdot 1)+(1 \cdot-1 \cdot 1)+(3 \cdot 1 \cdot 1)] \\
&=3
\end{aligned}
$$

Decomposing a Reducible Representation to Irreducible Representations

$$
\begin{aligned}
& a_{i}=(1 / h) \sum\left(X^{R} \cdot X_{i}^{R} \cdot C^{R}\right) \\
& a A_{1}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot 1 \cdot 1)+(1 \cdot 1 \cdot 1)+(3 \cdot 1 \cdot 1)] \\
&=3 \\
& a_{A_{2}}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot 1 \cdot 1)+(1 \cdot-1 \cdot 1)+(3 \cdot-1 \cdot 1)] \\
&=1 \\
& a B_{1}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot-1 \cdot 1)+(1 \cdot 1 \cdot 1)+(3 \cdot-1 \cdot 1)] \\
&=2 \\
& \mathrm{aB}_{2}=(1 / 4)[(9 \cdot 1 \cdot 1)+(-1 \cdot-1 \cdot 1)+(1 \cdot-1 \cdot 1)+(3 \cdot 1 \cdot 1)] \\
&=3
\end{aligned}
$$

\section*{| $\mathrm{C}_{2 \mathrm{v}}$ | E | C_{2} | σ_{v} | $\sigma_{\mathrm{v}}{ }^{\prime}$ |
| :---: | :---: | :---: | :---: | :---: |
| $\Gamma_{\text {red }}$ | 9 | -1 | 1 | 3 |}

$$
\Gamma_{\text {irred }}=3 A_{1}+A_{2}+2 B_{1}+3 B_{2}
$$

$$
\begin{array}{c|cccc}
C_{2 v} & E & C_{2} & \sigma_{v} & \sigma_{v}{ }^{\prime} \\
\hline A_{1} & 1 & 1 & 1 & 1 \\
A_{2} & 1 & 1 & -1 & -1 \\
B_{1} & 1 & -1 & 1 & -1 \\
B_{2} & 1 & -1 & -1 & 1
\end{array}
$$

Degrees of Freedom

Every molecule has $3 n$ energy modes

	degrees of atoms freedom	translation	rotation	vibration
1	3	3	0	0
2	6	3	2	1
(linear)	9	3	2	4
(nonlinear)	9	3	3	3

Irreducible Representations $3 A_{1}+A_{2}+2 B_{1}+3 B_{2}$

Represents the energy modes of the molecule

3 translational modes (x, y, z) non-linear molecule $\rightarrow 3$ rotational modes $\left(R_{x}, R_{y}, R_{z}\right)$ polyatomic \rightarrow vibrational modes

How many vibrational modes does SO_{2} have?

Energy Modes of $\mathrm{C}_{2 \mathrm{v}}$

Energy Modes of SO_{2}

$$
\Gamma_{\text {irred }}=3 A_{1}+A_{2}+2 B_{1}+3 B_{2}
$$

Assign the 9 energy modes of SO_{2}
Are all the vibrational modes infrared active?
Are all the vibrational modes Raman active?

Vibrational Modes of SO_{2}

t-s
symmetric
stretch
A_{1}
asymmetric stretch
B_{2}
symmetric bend A_{1}

$C_{2 v}$	E	C_{2}	σ_{v}	$\sigma_{v}{ }^{\prime}$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{z}	$x y$
B_{1}	1	-1	1	-1	x, R_{y}	$x z$
B_{2}	1	-1	-1	1	y, R_{x}	$y z$

Determining Hybridization

1. Determine the point group of the molecule.
2. Consider the σ bonds as vectors, and determine how they are transformed by the symmetry operations of the group.
3. Obtain the characters for the bonds. For each symmetry operation, a bond which remains in place contributes a value of +1 . If the bond is moved to another position, it contributes a value of 0 .
4. Reduce the set of characters to a linear combination of the character sets of the point group.

Hybridization

Determine the hybridization of boron in BF_{3}. The molecule is trigonal planar, and belongs to point group $D_{3 h}$.

1. Consider the σ bonds as vectors.

Hybridization

Determine the hybridization of boron in BF_{3}. The molecule is trigonal planar, and belongs to point group $D_{3 h}$.

1. Consider the σ bonds as vectors.

Hybridization

Determine how each vector (σ bond) is transformed by the symmetry operations of the aroun

$\mathrm{D}_{3 \mathrm{l}}$	E	2 C 3	$3 \mathrm{C}_{2}$	σ_{h}	2S3	$3 \sigma_{\mathrm{v}}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{A}_{2}{ }^{\prime}$	1	1	-1	1	1	-1	R_{2}	
E'	2	-1	0	2	-1	0	(x,y)	$\left(x^{2}-y^{2}, x y\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
E"	2	-1	0	-2	1	0	($\mathrm{R}, \mathrm{R}, \mathrm{l}$)	(xz,yz)

Determining Hybridization

$$
\begin{array}{llll}
\mathrm{E} & \underline{\mathrm{C}}_{3} & \underline{\mathrm{C}}_{2} & \underline{\sigma}_{\mathrm{n}}
\end{array} \underline{2 S}_{3} \underline{30}_{v}
$$

$\Gamma_{\text {red }}$

Determining Hybridization

$$
\Gamma_{\text {red }} \frac{\underline{E}}{3} \quad \underline{2 C}_{3} \quad \underline{3 C}_{2} \quad \underline{\sigma}_{h} \quad \underline{2 S}_{3} \quad{\underline{3 \sigma_{v}}}_{v}
$$

Determining Hybridization

$$
\Gamma_{\text {red }} \frac{\underline{E}}{3} \quad \underline{2 C}_{3} \quad \underline{3 C}_{2} \quad \underline{\sigma}_{h} \quad \underline{2 S}_{3} \quad \underline{3 \sigma}_{v}
$$

Determining Hybridization

Reducing a Representation $n_{i}=\frac{1}{h} \sum_{c} g_{c} \chi_{i} \chi_{r}$

$\mathrm{n}_{\mathrm{i}}=$ the number of times an irreducible representation $i \quad$ occurs in the reducible representation
$h=$ the order of the group (the total number of operations in the point group)
$\mathrm{c}=$ the class (type) of operation
$g_{c}=$ the number of operations in the class
$X_{i}=$ the character of the irreducible
representation
$\mathrm{X}_{\mathrm{r}}=$ the character of the reducible representation

Reducing a Representation
 $$
n_{i}=\frac{1}{h} \sum_{c} g_{c} \chi_{i} \chi_{r}
$$

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	$2 \mathrm{~S}_{3}$	$3 \sigma_{\mathrm{v}}$		
$\mathrm{A}_{1^{\prime}}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}^{\prime} 2^{\prime}$	1	1	1	-1	1	1	-1	R_{z}
E^{\prime}	2	-1	0	2	-1	0	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
	$\mathrm{A}_{1}{ }^{\prime \prime}$							
$\mathrm{A}_{2}{ }^{\prime \prime}$	1	1	1	1	-1	-1	-1	
	$\mathrm{E}^{\prime \prime}$	2	1	-1	0	-1	-1	1
		-2	1	0	$(\mathrm{R} . \mathrm{R} . \mathrm{R})$	$(\mathrm{xz}, \mathrm{yz})$		

The order of the group, h, is the total number of operations.

$$
h=1+2+3+1+2+3=12
$$

Hybridization of BF_{3}

$\Gamma_{\text {red }}$ reduces to $A_{1}{ }^{\prime}+E$ '. The orbitals used in hybridization must have this

$\mathrm{D}_{3 \mathrm{~h}}$	E	2 C 3	$3 \mathrm{C}_{2}$	σ_{h}	2 S 3	$3 \mathrm{OV}^{\text {g }}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
A $2{ }^{\prime}$	1	1	-1	1	1	-1	R_{7}	
E^{\prime}	2	-1	0	2	-1	0	(x,y)	$\left(x^{2}-y^{2}, x y\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{A}^{\prime \prime}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
E"	2	-1	0	-2	1	0	($\mathrm{R}_{\mathrm{c}} \mathrm{R}, \mathrm{o}$)	(xz,yz)

Hybridization of BF_{3}

$\Gamma_{\text {red }}$ reduces to $A_{1}{ }^{\prime}+E^{\prime}$. The orbitals used in hybridization must have this symmetry.

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	2 S 3	$3 \sigma_{\mathrm{v}}$		
$\mathrm{A}_{1^{\prime}}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
	$\mathrm{~A}_{2}^{\prime}$							
E^{\prime}	1	1	-1	1	1	-1	R_{2}	
	2	-1	0	2	-1	0	(x, y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
	$\mathrm{A}^{\prime \prime}$							
$\mathrm{A}^{\prime \prime}$	1	1	1	-1	-1	-1		
	$\mathrm{E}^{\prime \prime}$	2	1	-1	-1	-1	1	z
		0	-2	1	0	$\left(\mathrm{R}_{v}, \mathrm{R}_{0}\right)$	$(\mathrm{xz}, \mathrm{yz})$	

The s orbital and the d_{2} orbitals on boron have A_{1} ' symmetry. The $\mathbf{3} \mathrm{d}_{\mathbf{z}}{ }^{2}$ orbital is too high in energy to hybridize.

Hybridization of BF_{3}

$\Gamma_{\text {red }}$ reduces to $A_{1}{ }^{\prime}+E^{\prime}$. The orbitals used in hybridization must have this symmetry.

$\mathrm{D}_{3 \mathrm{~h}}$	E	$2 \mathrm{C}_{3}$	$3 \mathrm{C}_{2}$	σ_{h}	2S3	$3 \sigma_{\mathrm{v}}$		
$\mathrm{A}_{1}{ }^{\prime}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
A $2{ }^{\prime}$	1	1	-1	1	1	-1	R_{7}	
E^{\prime}	2	-1	0	2	-1	0	(x,y)	$\left(\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{1}{ }^{\text {I }}$	1	1	1	-1	-1	-1		
$\mathrm{A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
E"	2	-1	0	-2	1	0	($\mathrm{R}_{\mathrm{c}}, \mathrm{R}$,)	(xz,yz)

The p_{x} and p_{y} orbitals and the $d_{x}{ }^{2}{ }^{2} 2$ and $d_{x y}$ orbitals have E ' symmetry. Since the d orbitals on boron are too high in energy, they will not be used.

Hybridization of BF_{3}

$\Gamma_{\text {red }}$ reduces to $A_{1}{ }^{\prime}+E^{\prime}$. The orbitals used in hybridization must have this symmetry.

$\mathrm{D}_{3 \mathrm{~h}}$	E	2 C 3	3 C 2	σ_{h}	2S3	$3 \sigma^{2}$		
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	1	1	1		$\mathrm{x}^{2}+\mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{A} 2{ }^{\prime \prime}$	1	1	-1	1	1	-1	R_{7}	
E^{\prime}	2	-1	0	2	-1	0	(x,y)	($\left.\mathrm{x}^{2}-\mathrm{y}^{2}, \mathrm{xy}\right)$
$\mathrm{A}_{1}{ }^{\prime \prime}$	1	1	1	-1	-1	-1		
$\mathrm{A}_{2}{ }^{\prime \prime}$	1	1	-1	-1	-1	1	z	
$\mathrm{E}^{\prime \prime}$	2	-1	0	-2	1	0	(R, R,)	(xz, yz)

The hybridization of boron will $\mathbf{s p}^{2}$ or, more specifically, $s p_{x} p_{y}$.

Molecular Vibrations

Molecular motion includes translations, rotations and vibrations. The total number of degrees of freedom (types of molecular motion) is equal to 3 N , where N is the number of atoms in the molecule.

Molecular Vibrations

Of the 3 N types of motion, three represent molecular translations in the x, y or z directions. Linear molecules have two rotational degrees of freedom, and non-linear molecules have three rotational degrees of freedom.

Molecular Vibrations

For linear molecules, the number of molecular vibrations $=3 \mathrm{~N}-3-2=3 \mathrm{~N}-5$.

For non-linear molecules, the number of molecular vibrations $=3 \mathrm{~N}-3-$ $3=3 \mathrm{~N}-6$.

Molecular Vibrations

To obtain $\Gamma_{\text {red }}$ for all molecular motion, we must consider the symmetry properties of the three cartesian coordinates on all atoms of the molecule.

Molecular Vibrations

The molecule lies in the xz plane. The x axis is drawn in blue, and the y axis is drawn in black. The red arrows indicate the z axis.

Molecular Vibrations

The molecule lies in the xz plane. The x axis is drawn in blue, and the y axis is drawn in black. The red arrows indicate the z axis.

Molecular Vibrations

If a symmetry operation changes the position of an atom, all three cartesian coordinates contribute a value of 0 .

Molecular Vibrations

For operations that leave an atom in place, the character is +1 for an axis that remains in position, -1 for an axis that is reversed, and 0 for an axis that has been moved.

Molecular Vibrations

Identity leaves all
3 atoms in position, so the character will be 9.

Molecular Vibrations

Identity leaves all
3 atoms in position, so the character will be 9.

Molecular Vibrations

The C_{2} axis goes through the oxygen atom, and exchanges the hydrogen atoms.

Molecular Vibrations

The z axis (red) on oxygen stays in position. This axis contributes +1 towards the character for C_{2}.

Molecular Vibrations

The y axis (black) on oxygen is rotated by 180°. This reverses the axis, and contributes -1 to the character for C_{2}.

Molecular Vibrations

The x axis (blue) on oxygen is also rotated by 180°. This reverses the
 axis, and contributes -1 to the character for C_{2}.

Molecular Vibrations

The character for the C_{2} operation will be +1 (z axis on oxygen) -1 (y axis on oxygen) -1 (x axis on oxygen) $=-1$

Molecular Vibrations

The character for the C_{2} operation will be +1 (z axis on oxygen) -1 (y axis on oxygen) -1 (x axis on oxygen) $=-1$

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1		

The xz mirror plane is the molecular plane, and all three atoms remain in position.

Molecular Vibrations

The z axis and the x axis both lie within the xz plane, and remain unchanged.

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{zz})}$
9	-1		

Each unchanged axis contributes +1 to the character for the symmetry operation.

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1		

For 3 atoms, the contribution to the character will be:

$$
3(1+1)=6
$$

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1		

The y axis will be reversed by the mirror plane, contributing a value of -1 for each of the three atoms on the plane.

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{zz})}$
9	-1	3	

The character for the xz mirror plane will be:

$$
6-3=3
$$

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1	3	

The yz mirror plane bisects the molecule. Only the oxygen atom lies in the plane.

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1	3	

The y and z axis lie within the $y z$ plane, and each contributes +1 to the character.

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1	3	

The x axis on oxygen is reversed by the reflection, and contributes a-1 towards the character.

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1	3	1

The character for reflection in the $y z$ plane is:

$$
1+1-1=1
$$

Molecular Vibrations

E	C_{2}	$\sigma_{\mathrm{v}(\mathrm{xz})}$	$\sigma_{\mathrm{v}^{\prime}(\mathrm{yz})}$
9	-1	3	1

The above reducible representation is sometimes called $\Gamma_{3 \mathrm{~N}}$, because it reduces to all (3N) modes of molecular motion.
$\Gamma_{3 N}$ for water reduces to:

$$
3 A_{1}+A_{2}+3 B_{1}+2 B_{2}
$$

Molecular Vibrations

$\Gamma_{3 \mathrm{~N}}$ for water $=3 \mathrm{~A}_{1}+\mathrm{A}_{2}+3 \mathrm{~B}_{1}+$ $2 \mathrm{~B}_{2}$

Note that there are 9 modes of motion. These include vibrations, rotations and translations.

Molecular Vibrations

$\Gamma_{3 N}$ for water $=3 A_{1}+A_{2}+3 B_{1}+2 B_{2}$

Translations have the same symmetry properties as x, y and z .

$\mathrm{C}_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$x, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

$\Gamma_{3 N}$ for water $=3 A_{1}+A_{2}+3 B_{1}+2 B_{2}$

Translations have the same symmetry properties as x, y and z .

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2}, y^{2}, \mathbf{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

2

$\Gamma_{3 \mathrm{~N}}$ for water $=3 \mathrm{~A}_{1}+\mathrm{A}_{2}+3 \mathrm{~B}_{1}+2 \mathrm{~B}_{2}$
Translations have the same symmetry properties as x, y and z .

$\mathrm{C}_{2 v}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

$\Gamma_{3 N}$ for water $=3 A_{1}+A_{2}+3 B_{1}+2 B_{2}$

Translations have the same symmetry properties as x, y and z .

$\mathrm{c}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(x z)$	σ_{v}^{\prime} (y)		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
A_{2}	1	1	-1	-1	R_{2}	xy
B_{1}	1	-1	1	-1	$\chi_{\text {, }} \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	y, R_{x}	yz

Molecular Vibrations

$\Gamma_{3 N}$ for water $=3 A_{1}+A_{2}+3 B_{1}+2 B_{2}$

Translations have the same symmetry properties as x, y and z .

$\mathrm{C}_{2 v}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1		z^{\prime}
$\mathrm{x}_{2}, y^{2}, z^{2}$						
$\mathrm{~B}_{1}$	1	1	-1	-1	R_{z}	$x y$
$\mathrm{~B}_{2}$	1	-1	1	-1	ψ_{y}	R_{y}
xz						

Molecular Vibrations 2

$\Gamma_{3 \mathrm{~N}}$ for water $=3 \mathrm{~A}_{1}+\mathrm{A}_{2} \div 3 \mathrm{~B}_{1} \div \div \mathrm{B}_{2}$
Translations have the same symmetry properties as x, y and z .

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	R_{y}	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

$\Gamma_{\text {rot } \& \text { vib }}=2 A_{1}+A_{2}+2 B_{1}+1 B_{2}$

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathrm{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

$$
\Gamma_{\text {rot } \& \text { vib }}=2 A_{1}+A_{2}+2 B_{1}+1 B_{2}
$$

Rotations have the same symmetry as R_{x}, R_{y} and R_{z}.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathbf{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

$$
\Gamma_{\text {rot } \& \text { vib }}=2 A_{1}+A_{2}+2 B_{1}+1 B_{2}
$$

Rotations have the same symmetry as R_{x}, R_{y} and R_{z}.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}^{\prime}(\mathrm{yz}$		
A_{1}	1	1	1	1	z	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations
 $\Gamma_{\text {rot } \& \text { vib }}=2 \mathrm{~A}_{1}+12 \mathrm{~B}_{1}+1 \mathrm{~B}_{2}$

Rotations have the same symmetry as R_{x}, R_{y} arid R_{z}.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$\mathrm{x}^{2}, \mathrm{y}^{2}, z^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

$$
\Gamma_{\text {rot } \& \text { vib }}=2 A_{1}+1 B_{1}+1 B_{2}
$$

Rotations have the same symmetry as R_{x}, R_{y} and R_{z}.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{v}(x z)$	$\sigma_{v}^{\prime}(y z)$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2}, y^{2}, \mathbf{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Rotations and Translations

Molecular Vibrations
 $$
\Gamma_{\mathrm{vib}}=2 \mathrm{~A}_{1}+\mathrm{B}_{1}
$$

The three vibrational modes remain. Two have A_{1} symmetry, and one has B_{1} symmetry.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2}, \mathrm{y}^{2}, \mathbf{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations
 $$
\Gamma_{\mathrm{vib}}=2 \mathrm{~A}_{1}+\mathrm{B}_{1}
$$

Two vibrations are symmetric with respect to all symmetry operations of the group.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2}, y^{2}, \mathbf{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations
 $$
\Gamma_{\text {vib }}=2 A_{1}+B_{1}
$$

One vibration is asymmetric with respect to rotation and reflection perpendicular to the molecular plane.

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Molecular Vibrations

A_{1} symmetric stretch
A_{1} bend
B_{1} asymmetric stretch

Molecular Vibrations

For a molecular vibration to be seen in the infrared spectrum (IR active), it must change the dipole moment of the molecule. The dipole moment vectors have the same symmetry properties as the cartesian coordinates x, y and z .

Molecular Vibrations

Raman spectroscopy measures the wavelengths of light (in the IR range) scatted by a molecule. Certain molecular vibrations will cause the frequency of the scattered radiation to be less than the frequency

Molecular Vibrations

For a molecular vibration to be seen in the Raman spectrum (Raman active), it must change the polarizability of the molecule. The polarizability has the same symmetry properties as the quadratic functions:

$$
x y, y z, x z, x^{2}, y^{2} \text { and } z^{2}
$$

Molecular $\Gamma_{\Gamma_{\text {vib }}}=2 A_{1}+B_{1}$ of Water

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{\top} \cdot \mathrm{y}^{\top} \cdot \mathbf{z}^{3}$
$\mathrm{~A}_{7}$	1	1	-1	-1	R_{y}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The two vibrations with A_{1}
symmetry have \mathbf{z} as a basis
function, so they will be seen in the infrared spectrum of water. This will result in two peaks (at different frequencies) in the IR spectrum of

Molecular Vibrations of Water $\Gamma_{\text {vib }}=2 A_{1}+B_{1}$

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2} \cdot \mathrm{y}^{2} \cdot \mathbf{z}^{2}$
$\mathrm{~A}_{\mathrm{y}}$	1	1	-1	-1	R_{r}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The two vibrations with \mathbf{A}_{1} symmetry also have quadratic basis functions, so they will be seen in the Raman spectrum of water as well.

Molecular $\Gamma_{\Gamma_{\text {vib }}}=2 A_{1}+B_{1}$ of Water

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2} \cdot \mathrm{y}^{2} \cdot \mathbf{z}^{2}$
$\mathrm{~A}_{\mathrm{y}}$	1	1	-1	-1	R_{r}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The two vibrations with \mathbf{A}_{1} symmetry will appear as two peaks in both the IR and Raman spectra. The two frequencies observed in the IR and Raman for these vibrations will be the same in both

Molecular Vibrations of Water

$$
\Gamma_{\text {vib }}=2 A_{1}+B_{1}
$$

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{2} \cdot \mathrm{y}^{\top} \cdot \mathbf{z}^{\top}$
A_{7}	1	1	-1	-1	R_{y}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

The vibration with B_{1} symmetry has x and $x z$ as basis functions. This vibration will be both IR active and Raman active. This vibration will appear as a peak (at the same frequency) in both spectra.

Molecular Vibrations of Water $\Gamma_{\text {vib }}=2 A_{1}+B_{1}$

$\mathrm{C}_{2 \mathrm{~V}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{\mathrm{v}}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$x^{\top} \cdot \mathrm{y}^{?} \cdot \mathbf{z}^{2}$
$\mathrm{~A}_{7}$	1	1	-1	-1	R_{r}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

Both the IR and Raman spectra should show three different peaks.

Summary

1. Obtain the point group of the molecule.
2. Obtain $\Gamma_{3 \mathrm{~N}}$ by considering the three cartesian coordinates on all atoms that aren't moved by the symmetry operation.
3. Reduce $\Gamma_{3 \mathrm{~N}}$.
4. Eliminate translations and rotations.
5. Determine if remaining vibrations are IR and/or Raman active

Application: Carbonyl Stretches

Can IR and Raman spectroscopy determine the difference between two square planar complexes: cis$\mathrm{ML}_{2}(\mathrm{CO})_{2}$ and trans- $\mathrm{ML}_{2}(\mathrm{CO})_{2}$?

cis and trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

cis isomer -
$C_{2 v}$

trans isomer $D_{2 h}$

cis - $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

$\mathbf{C}_{2 \mathrm{v}}: \quad \underline{\underline{E}} \quad \underline{\mathbf{C}}_{2} \quad \underline{\mathbf{\sigma}}_{\mathrm{xz}} \quad \underline{\mathbf{o}}_{\mathrm{yz}}$
Γ_{co} :
2
$0 \quad 2$
0

$$
\text { cis }-\mathrm{ML}_{2}(\mathrm{CO})_{2}
$$

$\Gamma_{\text {co }}$ reduces to $A_{1}+$ B_{1}.
A_{1} is a symmetric stretch, and B_{1} is an asymmetric

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{\mathrm{v}}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	$\mathrm{x}^{2}, \mathrm{y}^{2}, \mathbf{z}^{2}$
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

$$
\text { cis }-\mathrm{ML}_{2}(\mathrm{CO})_{2}
$$

$\Gamma_{\text {CO }}$ reduces to $A_{1}+$ B_{1}.
The symmetric stretch $\left(A_{1}\right)$ is IR and Raman active.

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

$$
\text { cis }-\mathrm{ML}_{2}(\mathrm{CO})_{2}
$$

$\Gamma_{\text {co }}$ reduces to $A_{1}+$ B_{1}.
The asymmetric stretch $\left(B_{1}\right)$ is both IR and Raman

$\mathrm{C}_{2 \mathrm{v}}$	E	C_{2}	$\sigma_{v}(\mathrm{xz})$	$\sigma_{v}^{\prime}(\mathrm{yz})$		
A_{1}	1	1	1	1	\mathbf{z}	x^{2}, y^{2}, z^{2}
$\mathrm{~A}_{2}$	1	1	-1	-1	R_{z}	xy
B_{1}	1	-1	1	-1	$\mathrm{x}, \mathrm{R}_{\mathrm{y}}$	xz
B_{2}	1	-1	-1	1	$\mathrm{y}, \mathrm{R}_{\mathrm{x}}$	yz

trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

The trans isomer lies in the xy plane. The point group $\mathrm{D}_{2 \mathrm{~h}}$ has the following symmetry elements:
trans isomer -
D_{2}

$\mathrm{D}_{2 \mathrm{~h}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$	i^{2}	σ_{xy}	σ_{xz}	σ_{yz}

trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

The trans isomer lies in the xy plane. $\Gamma_{c o}$ is obtained by looking only at the two C-O bonds.

trans isomer -
D

$\mathrm{D}_{2 \mathrm{~h}}$	E	$\mathrm{C}_{2}(\mathrm{z})$	$\mathrm{C}_{2}(\mathrm{y})$	$\mathrm{C}_{2}(\mathrm{x})$	i^{2}	σ_{xy}	σ_{xz}	σ_{yz}
Γ_{CO}	2	0	0	2	0	2	2	0

trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

$\Gamma_{c o}$ reduces to A_{g} (a symmetric stretch) and $B_{3 u}(a n$ asymmetric stretch).

trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

$\Gamma_{c o}$ reduces to A_{g} (a symmetric stretch) and $B_{3 u}($ an asymmetric stretch).
A_{g} has $\mathrm{x}^{2}, \mathrm{y}^{2}$
and z^{2} as basis
functions, so this vibration is Raman active.

trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

A_{g} has $\mathrm{x}^{2}, \mathrm{y}^{2}$ and z^{2} as basis functions, so this vibration is Raman active.
$\mathrm{B}_{3 \mathrm{u}}$ has x as a basis function, so this vibration is IR active.

trans $\mathrm{ML}_{2}(\mathrm{CO})_{2}$

A_{g} has x^{2}, y^{2} and z^{2} as basis functions, so this vibration is Raman active.
$\mathrm{B}_{3 \mathrm{u}}$ has x as a basis function, so this vibration is IR active.

The IR and Raman spectra will each show one absorption at different frequencies.

Exclusion Rule

If a molecule has a center of symmetry, none of its modes of vibration can be both infrared and Raman active.

Exclusion Rule

If a molecule has a center of symmetry, none of its modes of vibration can be both infrared and Raman active. The cis and trans isomers of square planar $\mathrm{ML}_{2}(\mathrm{CO})_{2}$, can be easily distinguished using spectroscopy. The cis isomer has absorptions that are seen in both the IR and Raman spectra, whereas the trans isomer

